Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids (2025)

  • Saghyan, A. S. & Langer, P. Asymmetric Synthesis of Non-proteinogenic Amino Acids (Wiley-VCH, 2016).

    Book Google Scholar

  • Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).

    Article PubMed CAS Google Scholar

  • Janey, J. M. Recent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compounds. Angew. Chem. Int. Ed. 44, 4292–4300 (2005).

    Article CAS Google Scholar

  • Bøgevig, A., Juhl, K., Kumaragurubaran, N., Zhuang, W. & Jørgensen, K. A. Direct organo-catalytic asymmetric α-amination of aldehydes—a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acids. Angew. Chem. Int. Ed. 41, 1790–1793 (2002).

    Article Google Scholar

  • List, B. Direct catalytic asymmetric α-amination of aldehydes. J. Am. Chem. Soc. 124, 5656–5657 (2002).

    Article CAS PubMed Google Scholar

  • Kumaragurubaran, N., Juhl, K., Zhuang, W., Bøgevig, A. & Jørgensen, K. A. Direct l-proline-catalyzed asymmetric α-amination of ketones. J. Am. Chem. Soc. 124, 6254–6255 (2002).

    Article CAS PubMed Google Scholar

  • Morrill, L. C., Lebl, T., Slawin, A. M. Z. & Smith, A. D. Catalytic asymmetric α-amination of carboxylic acids using isothioureas. Chem. Sci. 3, 2088–2093 (2012).

    Article CAS Google Scholar

  • Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

    Article CAS Google Scholar

  • Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article CAS PubMed Google Scholar

  • Ju, M. & Schomaker, J. M. Nitrene transfer catalysts for enantioselective C–N bond formation. Nat. Rev. Chem. 5, 580–594 (2021).

    Article CAS Google Scholar

  • Nägeli, I. et al. Rhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-λ3-iodane. Helv. Chim. Acta 80, 1087–1105 (1997).

    Article Google Scholar

  • Zhou, X.-G., Yu, X.-Q., Huang, J.-S. & Che, C.-M. Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 2377–2378 (1999).

  • Kohmura, Y. & Katsuki, T. Mn(salen)-catalyzed enantioselective C–H amination. Tetrahedron Lett. 42, 3339–3342 (2001).

    Article CAS Google Scholar

  • Yamawaki, M., Tsutsui, H., Kitagaki, S., Anada, M. & Hashimoto, S. Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C–H bonds. Tetrahedron Lett. 43, 9561–9564 (2002).

    Article CAS Google Scholar

  • Liang, C. et al. Efficient diastereoselective intermolecular rhodium-catalyzed C–H amination. Angew. Chem. Int. Ed. 45, 4641–4644 (2006).

    Article CAS Google Scholar

  • Nishioka, Y., Uchida, T. & Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C–H bond amination. Angew. Chem. Int. Ed. 52, 1739–1742 (2013).

    Article CAS Google Scholar

  • Höke, T., Herdtweck, E. & Bach, T. Hydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(II) complex. Chem. Commun. 49, 8009–8011 (2013).

    Article CAS Google Scholar

  • Nasrallah, A. et al. Catalytic enantioselective intermolecular benzylic C(sp3)–H amination. Angew. Chem. Int. Ed. 58, 8192–8196 (2019).

    Article CAS Google Scholar

  • Jin, L.-M., Xu, P., Xie, J. & Zhang, X. P. Enantioselective intermolecular radical C–H amination. J. Am. Chem. Soc. 142, 20828–20836 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Liang, J.-L., Yuan, S.-X., Huang, J.-S., Yu, W.-Y. & Che, C.-M. Highly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrins. Angew. Chem. Int. Ed. 41, 3465–3468 (2002).

    Article CAS Google Scholar

  • Milczek, E., Boudet, N. & Blakey, S. Enantioselective C–H amination using cationic ruthenium(II)–pybox catalysts. Angew. Chem. Int. Ed. 47, 6825–6828 (2008).

    Article CAS Google Scholar

  • Ichinose, M. et al. Enantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultams. Angew. Chem. Int. Ed. 50, 9884–9887 (2011).

    Article CAS Google Scholar

  • Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  • Lang, K., Torker, S., Wojtas, L. & Zhang, X. P. Asymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitution. J. Am. Chem. Soc. 141, 12388–12396 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 9, 219–227 (2019).

    Article CAS Google Scholar

  • van Vliet, K. M. & de Bruin, B. Dioxazolones: stable substrates for the catalytic transfer of acyl nitrenes. ACS Catal. 10, 4751–4769 (2020).

    Article CAS Google Scholar

  • Zheng, Y. et al. Octahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysis. J. Am. Chem. Soc. 139, 4322–4325 (2017).

    Article CAS PubMed Google Scholar

  • Zhou, Z. et al. Catalytic enantioselective intramolecular C(sp3)–H amination of 2-azidoacetamides. Angew. Chem. Int. Ed. 58, 1088–1093 (2019).

    Article CAS Google Scholar

  • Zhou, Z. et al. Enantioselective ring-closing C–H amination of urea derivatives. Chem 6, 2024–2034 (2020).

    Article CAS Google Scholar

  • Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article CAS PubMed Google Scholar

  • Ueno, K. et al. 6,11-Dihydro-11-oxodibenz[b,e]oxepinacetic acids with potent antiinflammatory activity. J. Med. Chem. 19, 941–946 (1976).

    Article CAS PubMed Google Scholar

  • Krupp, P. J. et al. Sodium [o-[(2,6-dichlorophenyl)-amino]-phenyl]-acetate (GP 45 840), a new non-steroidal anti-inflammatory agent. Experientia 29, 450–452 (1973).

    Article CAS PubMed Google Scholar

  • Bauer, I. & Knölker, H.-J. Iron catalysis in organic synthesis. Chem. Rev. 115, 3170–3387 (2015).

    Article CAS PubMed Google Scholar

  • Liu, Y. et al. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem. Soc. Rev. 49, 5310–5358 (2020).

    Article CAS PubMed Google Scholar

  • Hong, Y., Jarrige, L., Harms, K. & Meggers, E. Chiral-at-iron catalyst: expanding the chemical space for asymmetric earth-abundant metal catalysis. J. Am. Chem. Soc. 141, 4569–4572 (2019).

    Article CAS PubMed Google Scholar

  • Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article CAS PubMed Google Scholar

  • Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

    Article CAS PubMed Google Scholar

  • Mitra, M. et al. Highly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligand. Dalton Trans. 48, 6123–6131 (2019).

    Article CAS PubMed Google Scholar

  • Poli, R. & Harvey, J. N. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 32, 1–8 (2003).

    Article CAS PubMed Google Scholar

  • Harvey, J. N., Poli, R. & Smith, K. M. Understanding the reactivity of transition metal complexes involving multiple spin states. Coord. Chem. Rev. 238-239, 347–361 (2003).

    Article CAS Google Scholar

  • Yersin, H. & Humbs, W. Spatial extensions of excited states of metal complexes. Tunability by chemical variation. Inorg. Chem. 38, 5820–5831 (1999).

    Article CAS Google Scholar

  • Maestre, L., Sameera, W. M. C., Díaz-Requejo, M. M., Maseras, F. & Pérez, P. J. A general mechanism for the copper- and silver-catalyzed olefin aziridination reactions: concomitant involvement of the singlet and triplet pathways. J. Am. Chem. Soc. 135, 1338–1348 (2013).

    Article CAS PubMed Google Scholar

  • Jung, H., Keum, H., Kweon, J. & Chang, S. Tuning triplet energy transfer of hydroxamates as the nitrene precursor for intramolecular C(sp3)–H amidation. J. Am. Chem. Soc. 142, 5811–5818 (2020).

    Article CAS PubMed Google Scholar

  • Ess, D. H. & Houk, K. N. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J. Am. Chem. Soc. 130, 10187–10198 (2008).

    Article CAS PubMed Google Scholar

  • Krenske, E. H. & Houk, K. N. Aromatic interactions as control elements in stereoselective organic reactions. Acc. Chem. Res. 46, 979–989 (2013).

    Article CAS PubMed Google Scholar

  • Wheeler, S. E. Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc. Chem. Res. 46, 1029–1038 (2013).

    Article CAS PubMed Google Scholar

  • Wheeler, S. E. & Bloom, J. W. G. Toward a more complete understanding of noncovalent interactions involving aromatic rings. J. Phys. Chem. A 118, 6133–6147 (2014).

    Article CAS PubMed Google Scholar

  • Isidro-Llobet, A., Álvarez, M. & Albericio, F. Amino acid-protecting groups. Chem. Rev. 109, 2455–2504 (2009).

    Article CAS PubMed Google Scholar

  • Blaskovich, M. A. T. Unusual amino acids in medicinal chemistry. J. Med. Chem. 59, 10807–10836 (2016).

    Article CAS PubMed Google Scholar

  • Agostini, F. et al. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew. Chem. Int. Ed. 56, 9680–9703 (2017).

    Article CAS Google Scholar

  • Drienovská, I. & Roelfes, G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat. Catal. 3, 193–202 (2020).

    Article CAS Google Scholar

  • Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Gov. Deandrea McKenzie

    Last Updated:

    Views: 5449

    Rating: 4.6 / 5 (46 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Gov. Deandrea McKenzie

    Birthday: 2001-01-17

    Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

    Phone: +813077629322

    Job: Real-Estate Executive

    Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

    Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.